Rings with Finite Gorenstein Global Dimension
نویسندگان
چکیده
We find new classes of non noetherian rings which have the same homological behavior that Gorenstein rings.
منابع مشابه
Gorenstein homological dimensions with respect to a semi-dualizing module over group rings
Let R be a commutative noetherian ring and Γ a finite group. In this paper,we study Gorenstein homological dimensions of modules with respect to a semi-dualizing module over the group ring . It is shown that Gorenstein homological dimensions of an -RΓ module M with respect to a semi-dualizing module, are equal over R and RΓ .
متن کاملOn (weak) Gorenstein Global Dimensions
In this note, we characterize the (weak) Gorenstein global dimension for arbitrary associative rings. Also, we extend the well-known Hilbert’s syzygy Theorem to the weak Gorenstein global dimension, and we study the weak Gorenstein homological dimensions of direct product of rings which gives examples of non-coherent rings with finite Gorenstein dimensions > 0 and infinite classical weak dimens...
متن کاملGENERALIZED GORENSTEIN DIMENSION OVER GROUP RINGS
Let $(R, m)$ be a commutative noetherian local ring and let $Gamma$ be a finite group. It is proved that if $R$ admits a dualizing module, then the group ring $Rga$ has a dualizing bimodule as well. Moreover, it is shown that a finitely generated $Rga$-module $M$ has generalized Gorenstein dimension zero if and only if it has generalized Gorenstein dimension zero as an $R$-module.
متن کاملGlobal Gorenstein Dimensions of Polynomial Rings and of Direct Products of Rings
In this paper, we extend the well-known Hilbert’s syzygy theorem to the Gorenstein homological dimensions of rings. Also, we study the Gorenstein homological dimensions of direct products of rings. Our results generate examples of non-Noetherian rings of finite Gorenstein dimensions and infinite classical weak dimension.
متن کاملGorenstein Global Dimensions and Cotorsion Dimension of Rings
In this paper, we establish, as a generalization of a result on the classical homological dimensions of commutative rings, an upper bound on the Gorenstein global dimension of commutative rings using the global cotorsion dimension of rings. We use this result to compute the Gorenstein global dimension of some particular cases of trivial extensions of rings and of group rings.
متن کامل